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Abstract

This paper extends Diamond and Dybvig�s model [J. Political Economy 91 (1983) 401] to a

framework in which bank assets are risky, there is aggregate uncertainty about the demand for

liquidity in the population and some individuals receive a signal about bank asset quality. Others

must then try to deduce from observed withdrawals whether an unfavorable signal was received

by this group or whether liquidity needs happen to be high. In this environment, both informa-

tion-induced and pure panic runs will occur. However, banks can prevent them by designing the

deposit contract appropriately. It is shown that in some cases it is optimal for the bank to pre-

vent runs but there are situations where the bank run allocation may be welfare superior.
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1. Introduction

Banking crises have traditionally been an important source of public concern. Ex-

amples of financial crises in the history of the financial systems were the Great De-

pression (1929–1933) which had a significant impact on the banking system of the

US 1 or the more recent crises in emerging countries. 2

*Tel.: +34-91-6249647; fax: +34-91-6249608.

E-mail address: samartin@emp.uc3m.es (M. Samart�ıın).
1 From 1930 to 1933 the number of bank failures in the US averaged over 2000 per year (see Mishkin,

1995).
2 Lindgren et al. (1996) find that 73% of the IMF�s member countries suffered banking crises between

1980 and 1996.
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Given the historical importance of banking panics and their current relevance it is

important to understand why they occur and what policies should be implemented to

deal with them. In this sense, the theoretical research on banking has focused on an-

alyzing the microeconomic nature of banks and their role in the economy. Diamond

and Dybvig (1983), which formalized some of the ideas provided in Bryant (1980),
made a significant contribution by modeling the demand for liquidity and the trans-

formation service provided by banks. They demonstrated that demand deposit con-

tracts, which enable the transformation of illiquid assets into more liquid liabilities,

provide a rationale both for the existence of banks and for their vulnerability to runs.

The optimal contract yields a higher level of consumption for those who withdraw

early than the technological return. Bank runs, thus, take place when the idea of de-

posit withdrawals spills over economic agents (an essential point is that banks satisfy

a sequential service constraint (see Wallace, 1988)). The model concludes that with
no aggregate uncertainty, a suspension of convertibility policy can hinder the bank

run equilibrium. Otherwise, a deposit insurance policy would be more effective. Di-

amond and Dybvig�s model attracted severe criticisms (e.g., Gorton, 1988) for as-

suming that bank runs are random phenomena, and thus, uncorrelated with other

economic variables. Gorton (1988), in an empirical study of bank runs in the US

during the National Banking Era (1863–1913), found support for the notion that

bank runs tended to occur after business cycle peaks.

Since the seminal work of Diamond and Dybvig, economists have used many
variations of this model to explore banking issues. Bhattacharya and Gale (1987)

consider a variation of the model with many intermediaries who face privately ob-

served liquidity shocks. They show the welfare gains from setting up an institution,

such as a central bank, offering borrowing and lending opportunities at a subsidized

rate. Jacklin and Bhattacharya (1988) introduce smooth preferences and a risky tech-

nology and show that the optimality of bank deposits compared to equities depends

on the characteristics of the risky investment. Hellwig (1994) introduces interest rate

risk and shows that as interest rates increase the optimal rate of deposits withdrawn
in the first period should decrease and that of deposits that remain until the second

one should increase. Champ et al. (1996) assume that the fraction of the population

requiring liquidity is random and construct a monetary model where seasonal vari-

ations in the demand for liquidity play a critical role in generating banking panics.

Hazlett (1997) makes the technology risky in order to explore the costs and benefits

of deposit insurance. Allen and Gale (1998) also introduce a risky technology and

show that under certain circumstances, bank runs can be first best efficient, as they

allow efficient risk sharing among depositors and they allow banks to hold efficient
portfolios. Alonso (1996) demonstrates using numerical examples that in the Jacklin

and Bhattacharya framework contracts where runs occur may be better than con-

tracts that ensure runs do not occur because the former improve risk sharing. Fi-

nally, Lin (1996) models a continuum of types and Postlewaite and Vives (1987)

extend the number of periods in the model.

The main objective of this paper is to cover one gap in this theory by extending

the Diamond and Dybvig�s framework to a situation in which there is both aggregate

uncertainty about the demand for liquidity in the population and a risky technology.
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It is also assumed that the long term technology can be liquidated early at a cost. As

in Chari and Jagannathan (1988) there is a signal extraction problem in which some

individuals receive a signal about the bank�s return, and others must infer from ob-

served withdrawals whether a negative signal was received by informed depositors or

whether liquidity needs happen to be high. The difference with Chari and Jaganna-
than (1988) is that in this model individuals are risk averse and the ex ante optimal

risk sharing contract is presented. 3 As banks operate in a competitive environment,

the optimal contract is the one that maximizes the expected utility of depositors.

Also, banks are informed about the investment return and are fully rational, that

is, they are aware depositors might receive interim information and they can foresee

the consequences of different contract structures. In particular, two different con-

tracts are considered: The first contract ignores the impact of interim information

at date 1 and as a result bank runs become a possibility. However, as self-serving
bank managers do not want to liquidate the investment (they want to keep their

job) they will suspend convertibility whenever runs occur. It is then assumed that this

suspension measure will only be effective when the bank is solvent. This means that

suspension will be effective when the high value of the investment return is realized at

date 2. In the case in which the low value of the investment return is realized at date 2

and it is lower than the liquidation value of the technology at date 1, then suspension

cannot be sustained and the bank will be liquidated at date 1. In the case of the sec-

ond contract, it is designed so that bank runs are always prevented.
The contribution of this paper is to show that bank runs are not always necessar-

ily bad in an ex ante welfare sense, that is, in some cases, banks will choose contracts

where runs will occur with a positive probability. 4 It is shown that if the probability

of the low return occurring is below a critical value (p�), contracts that allow for runs

would be welfare superior. This critical p� will depend on the level of risk aversion,

the average return and the dispersion of the underlying technology. However, the liq-

uidation value of the long term technology is crucial in order to determine the supe-

riority of the demand deposit contract. If this liquidation value is considered to be
even lower than the low return generated by the long term asset then a contract that

prevents runs by penalizing early withdrawals (and therefore eliminating the with-

drawal incentive of individuals who do not need to consume early) dominates the

previous contract. The reason is that a low liquidation value significantly increases

the welfare costs of bank runs, and hence affects the optimality of the demand de-

posit contract.

The structure of the paper is as follows: The basic framework of the model is pre-

sented in Section 2. The risk sharing problem, subject to incentive compatibility, is
presented in Section 3. In this case, the optimal allocation can be made contingent

on the return on the risky asset and the withdrawal queue size, and is considered

as the benchmark case. Section 4 considers the case in which the bank offers a typical

3 Chari and Jagannathan�s paper raised considerable criticisms due to the ambiguous role of banks or

any other financial intermediary in the model, being assumed that individuals were risk neutral.
4 This issue is also analyzed in Alonso (1996). However, she models a different environment that does

not consider panic aspects and obtains different conditions under which bank runs should occur.
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demand deposit contract, that is not contingent on the return on the risky asset nor

the liquidity needs. In Section 4.1 the bank designs the contract ignoring the impact

of interim information and therefore bank runs will occur under certain conditions.

Section 4.2 considers a quite different case in which the bank designs the deposit

contract so that bank runs are always prevented. A welfare comparison of the two
contracts, using numerical examples, is provided in Section 5. Finally, Section 6 con-

cludes the paper.

2. The model

The model can be summarized as follows: There is a three date period economy

(T ¼ 0, 1, 2) and one single commodity. There is one investment technology, that
for each unit invested at T ¼ 0 generates a random return eRR at T ¼ 2. The value

of this random return will be Rl with probability p and Rh with probability 1� p.
It is assumed that 06Rl < 1 < Rh

5 and the average return ðR ¼ pRl þ ð1� pÞRhÞ
is >1. If the production process is liquidated prematurely, then it will yield a liqui-

dation value of L. As this liquidation value is crucial for the results, two different

cases will be considered: (a) The liquidation value is lower than the low value of

the random return (L < Rl) and (b) the liquidation value is between the low and

the high value of the random return (Rl < L < 1 < Rh).
On the household side of the economy, there is a continuum of ex ante identical

agents that are endowed with one unit of the consumption good at T ¼ 0 and have

no more endowment in the subsequent periods. They are subject at T ¼ 1 to a pri-

vately observed uninsurable risk of being of either of two types. Type 1 (or impa-

tient) agents derive only utility for consumption in period one and type 2 (or

patient) agents derive only utility for consumption in period 2. In addition, type 2

agents can privately store the good from date 1 to date 2. In order to obtain numer-

ical results, the following form for the utility function is assumed:

UðciÞ ¼
ðci þ 1Þ1�c

1� c
; i ¼ 1; 2; ð1Þ

where c, the constant relative risk aversion coefficient, is assumed to be greater than

one. 6

Also, aggregate demand for liquidity is random, that is, the proportion of type 1

agents can be t1 with probability r1 or t2 with probability r2 (t1 þ t2 ¼ 1 and t1 < t2).
At T ¼ 1 a random fraction, ~aa, of type 2 individuals receives information about

date 2 returns and it is assumed that this information is perfect, that is, they know

with probability one the realization of the random return at T ¼ 2. This random

5 The value of Rl is sufficiently low, so that bad information about bank asset quality will lead always to

a run.
6 This function solves the problem that appears when the standard potential utility function is used and

c > 1: Zero consumption has an infinite negative value in terms of utility.
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variable ~aa can take a value a with probability q and 0 with probability 1� q. It is
observed that in some states of nature, there will be no informed agents in the model.

As in Chari and Jagannathan (1988), the random proportion of type 1 agents is

needed in order to create confusion between a large withdrawal queue size at the

bank due to liquidity shocks, t2 realized, or negative information shocks.

Finally, and in order for individuals to have a non-trivial signaling extraction

problem, the following parameter restriction is assumed (it will become clear later

why this assumption is necessary):

t2 ¼ t1 þ að1� t1Þ: ð2Þ

The state of nature is described by the vector ~hh ¼ ð~tt; ~aa; eRRÞ that contains the three

random variables that are independently distributed. Table 1 (columns 2 and 3)

shows the different states of nature and its associated probabilities.
In the model, in line with the standard banking literature, it is assumed that banks

have a comparative advantage in investing in the risky asset. At T ¼ 0 individuals

deposit their funds in the bank in order to take advantage of this expertise. At

T ¼ 1, when the preference and information shocks are realized, they will decide

whether they wish to withdraw at T ¼ 1 or T ¼ 2. The banking sector is perfectly

competitive, so banks offer risk sharing contracts that maximize depositors� ex ante

expected utility, subject to a zero profit constraint. In this context, the incentive-ef-

ficient allocation is identified with an optimal mechanism design problem in which
the optimal allocation can be made contingent on the return on the risky asset (eRR)
and the liquidity shock (~tt) but not on depositors� types. This benchmark case will

be compared with the risk sharing that is achieved in practice through a typical de-

mand deposit contract.

3. The ex ante optimal risk sharing problem

It is initially considered the ideal case where banks can write contracts in which

the amount that can be withdrawn at each date is contingent on the random return

(eRR) and the withdrawal queue size (~tt). The deposit contract will be represented by the

functions ~cc1, ~cc2, which specify consumption for type 1 and type 2 consumers respec-

tively.

Table 1

States of nature

hi i State
~tt~aaeRR Prob.

pðhiÞ
Aggregate demand for liquidity

at T ¼ 1 ðfCTCT1Þ
fCTCT1 (Theorem 3

satisfied)

1 t10eRR r1ð1� qÞ t1c1 þ ð1� t1ÞxU t1c1
2 t1aRh r1ð1� pÞq t1c1 þ ð1� t1Þð1� aÞxU t1c1
3 t1aRl r1pq t1c1 þ ð1� t1Þ½ac1 þ ð1� aÞxU� c1
4 t20eRR r2ð1� qÞ t2c1 þ ð1� t2ÞxU c1
5 t2aRh r2ð1� pÞq t2c1 þ ð1� t2Þð1� aÞxU t2c1
6 t2aRl r2pq t2c1 þ ð1� t2Þ½ac1 þ ð1� aÞxU� c1
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The optimal incentive compatible risk sharing problem can be written as follows:

max
~cc1;~cc2;~KK

E~RR;~tt ~ttU ~cc1
� �hn

þ 1
�

� ~tt
�
U ~cc2
� �io

ð3Þ

s.t.

~tt~cc1 6 eKKL;

1
�

� ~tt
�
~cc2 6 1

�
� eKK�eRR 8eRR;~tt;

~cc1 6 ~cc2;

ð4Þ

where ~cc1 represents consumption at time T ¼ 1 for the type 1 agent and ~cc2 con-

sumption at time T ¼ 2 for the type 2 agent and that will depend on eRR and ~tt. eKK is the

proportion of the long term investment that is liquidated at T ¼ 1, also contingent

on the random return and the withdrawal queue size. The first two constraints

represent resource balance constraints while the last one is the incentive compati-

bility constraint that guarantees that for each possible realization of eRR and ~tt the
consumption of type 1 depositors should never exceed that of type 2 depositors, that

is, the contract is designed so that individuals self-select their type contract.
Equivalently, by eliminating eKK from the first and second resource constraints, the

problem could be stated as follows:

max
~cc1;~cc2

fE~RR;~tt½~ttUð~cc1Þ þ ð1� ~ttÞUð~cc2Þ�g ð5Þ

s.t.

~tt
~cc1
L
þ ð1� ~ttÞ ~cc2eRR ¼ 1 8eRR;~tt;

~cc1 6 ~cc2:
ð6Þ

The solution to the above problem is defined below.

Theorem 1. The solution ½~cc�1; ~cc�2�, to the optimal risk sharing problem is characterized
by the following conditions:

If eRR < L:

~cc�1 ¼ ~cc�2 ¼
eRRL

~tteRR þ ð1� ~ttÞL
: ð7Þ

If eRR P L:

~cc�1 ¼
1þ 1�~tt

~RR
1� ~RR

L

� �1=c	 

1�~ttð Þ
L1=c

eRRð1�cÞ=c þ ~tt
L

; ~cc�2 ¼
eRR
L

 !1=c

ð~cc1 þ 1Þ � 1: ð8Þ

Proof. See Appendix A. �
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It can be observed that if the realized value of the long term asset is lower than its

liquidation value at date 1 (eRR < L), then the optimal contract would involve giving

both types of depositors the same consumption and the incentive constraint would

be binding. Otherwise, the patient consumers would receive strictly more than the

impatient ones and the incentive constraint would no longer bind.

For the parameter values shown in Table 2, in case (a), the optimal contract
would be: c�1 ¼ 0:200, c�2 ¼ 0:205 for t ¼ t1 and R ¼ Rl; c�1 ¼ 0:260, c�2 ¼ 1:109 for

t ¼ t1 and R ¼ Rh; c�1 ¼ 0:199, c�2 ¼ 0:206 for t ¼ t2 and R ¼ Rl. Finally, c�1 ¼ 0:228,
c�2 ¼ 1:057 for t ¼ t2 and R ¼ Rh. The expected utility achieved is U � ¼ �0:122.

Similarly, the optimal contract in case (b) would be: c�1 ¼ c�2 ¼ 0:297 for t ¼ t1 and
R ¼ Rl; c�1 ¼ 0:673, c�2 ¼ 1:186 for t ¼ t1 and R ¼ Rh; c�1 ¼ c�2 ¼ 0:362 for t ¼ t2 and

R ¼ Rl. Finally, c�1 ¼ 0:609, c�2 ¼ 1:103 for t ¼ t2 and R ¼ Rh. The expected utility

achieved is U � ¼ �0:073.

4. The demand deposit contract

The optimal risk sharing problem of the preceding section serves as a benchmark

for the risk sharing that can be achieved in practice with the type of contracts that

banks are restricted to use. Let a demand deposit contract be defined as a contract

that requires an initial investment at T ¼ 0 with the intermediary in exchange for the

right to withdraw per unit of initial investment (at the discretion of depositor and
conditional on the bank�s solvency) either c1 units in period 1 or ~cc2 units in period

2. The second period random payment will depend on the withdrawal queue size ~tt
and the random return eRR, 7 so that ct12h will represent consumption at date 2 if the

high return is realized and if the proportion of type 1 consumers is t1. Similarly,

ct12l represents consumption at date 2 if the low return is realized and if the proportion

of type 1 consumers is t1. The unknowns ct22h and ct22l are defined in a similar way.

As mentioned in the introduction, competition forces the bank to offer a deposit

contract that maximizes the expected utility of depositors. Also, banks are informed
of the investment return in the interim period and are fully rational, that is, they are

aware depositors might receive interim information and they can foresee the conse-

quences of different contract structures. In particular, two different contracts are con-

sidered: In the first subsection the contract ignores the impact of interim information

Table 2

Numerical data

t1 t2 r1 r2 �tt Rl Rh p R r2 a q c

0.50 0.70 0.90 0.10 0.52 0.21 1.57 0.20 1.30 0.30 0.40 0.99 4.0

Case (a): L ¼ 0:19, case (b): L ¼ 0:54.

7 This uncertain second period return reflects the fact that having invested in a risky asset the bank may

not be able to make its promised payments at date 2.
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at T ¼ 1 and therefore bank runs will occur under certain conditions. In the second

subsection the contract is designed so that runs do not occur.

4.1. The demand deposit contract with runs

The optimal contract choice for a deposit contract, in the absence of interim in-
formation can be obtained as a solution to the following problem:

max
c1;c

t1
2h
;c
t1
2l
;c
t2
2h
;c
t2
2l

r1 t1U c1ð Þ
�

þ ð1� t1Þ ð1
�

� pÞU ct12h
 �

þ pU ct12l
 ���

þ r2 t2U c1ð Þ


þ ð1� t2Þ ð1
�

� pÞU ct22h
 �

þ pU ct22l
 ����

ð9Þ

s.t.

t1
c1
L
þ ð1� t1Þ

ct12h
Rh

¼ 1; t1
c1
L
þ ð1� t1Þ

ct12l
Rl

¼ 1;

t2
c1
L
þ ð1� t2Þ

ct22h
Rh

¼ 1; t2
c1
L
þ ð1� t2Þ

ct22l
Rl

¼ 1; ð10Þ

Uðc1Þ6 r1 ð1
�

� pÞUðct12hÞ þ pUðct12lÞ
�
þ r2 ð1

�
� pÞUðct22hÞ þ pUðct22lÞ

�
: ð11Þ

The first four constraints are the corresponding resource constraints and the last one

is the incentive compatibility constraint, which is expressed in expected terms (using

the ex ante probabilities) given that the contract ignores the impact of interim in-

formation at date 1.

The solution to this problem is given by the following theorem:

Theorem 2. The solution c�1, ct1�2h , ct2�2h , ct1�2l , ct2�2l to the demand deposit contract is
characterized by the following conditions:

ct1�2h ¼
1� t1

L c
�
1

 �
Rh

1� t1
; ct1�2l ¼ ct1�2h

Rl

Rh

; ct2�2h ¼
1� t2

L c
�
1

 �
Rh

1� t2
; ct2�2l ¼ ct2�2h

Rl

Rh

ð12Þ

and c�1 is the solution to the following non-linear equation:

�ttðc1 þ 1Þ�c � Rh

t1
L
r1 ð1
(

� pÞ
1� t1

L c1
 �

Rh

1� t1

	
þ 1


�c

þ p
1� t1

L c1
 �

Rl

1� t1

	
þ 1


�c
)

� Rh

t2
L
r2 ð1
(

� pÞ
1� t2

L c1
 �

Rh

1� t2

	
þ 1


�c

þ p
1� t2

L c1
 �

Rl

1� t2

	
þ 1


�c
)

¼ 0

ð13Þ

where �tt ¼ r1t1 þ r2t2
if the incentive compatibility constraint is not binding. Otherwise, the unknown c�1 must
satisfy the incentive compatibility constraint.

Proof. See Appendix B. �
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Suppose now that at T ¼ 0, when individuals deposit their unit of endowment in

the bank, the above contract is offered. At T ¼ 1 or the interim stage, the preference

and information shocks are realized, and so every individual learns his or her type,

that is, they know whether they are impatient consumers, who need to consume in

the interim period or patient agents who prefer to consume at date 2. Also, a fraction
of type 2 or patient consumers will receive a signal that reveals with perfect accuracy

the return of the long-term asset at T ¼ 2. Given these shocks, individuals will decide

on the amount they wish to withdraw at each date. The withdrawal decision of type 1

individuals is trivial. As these agents face liquidity needs at date 1, they will always

select their own contract or withdrawal stream (c�1). Similarly, informed type 2 indi-

viduals will choose to withdraw their funds from the bank, that is, to select the type 1

contract, if they receive a negative information shock. They would maintain their

funds if they receive a positive one. The demand for liquidity of informed agents,
conditional on each state of nature, will be denoted by ~xxI. Finally, there are unin-

formed type 2 agents, who will try to figure out when a negative signal has occurred

by looking at the size of early withdrawals from the bank. However, this size can be

large enough due to both a negative information shock or to a liquidity shock (those

states of nature in which the highest proportion of type 1 agents is realized, i.e t ¼ t2).
As a result, equilibria have the property that massive bank withdrawals by the un-

informed depositors are sometimes due to an incorrect inference that the bank�s as-
sets will yield a low return. Similarly to the informed agents case, the demand for
liquidity for uninformed agents will be denoted by ~xxU. In the following lines, we will

characterize the optimal withdrawal decision of the uninformed agents for each state

of nature. Let fCTCT1 represent the withdrawal queue size or the level of aggregate de-

mand for liquidity at date 1 for each state of nature, that is,fCTCT1 ¼ ~ttc�1 þ ð1� ~ttÞ½~aa~xxI þ ð1� ~aaÞ~xxU� ð14Þ
where ~xxI, ~xxU represent demand for liquidity at date 1 for informed and uninformed

type 2 agents respectively. 8 The values of fCTCT1 are shown in Table 1 (column 4).

We assume that the information partitions of the uninformed type 2 in the con-

jectured equilibrium are as follows:

CT1 ¼ t1c1; which implies states h ¼ 1; 2:

As individuals cannot distinguish between the two states they would assign a con-

ditional probability p1ð1;2Þ ¼ ð1� pÞr1=ðr1ð1� qÞ þ r1ð1� pÞqÞ to receiving the high-

est second period consumption (i.e when eRR ¼ Rh occurs) and p2ð1;2Þ ¼ pr1ð1� qÞ=
ðr1ð1� qÞ þ r1ð1� pÞqÞ to receiving the lowest second period one (i.e. when eRR ¼
Rl occurs).

CT1 ¼ c1; which implies states h ¼ 3; 4 and 6:

Similarly, as individuals cannot distinguish among those states they would as-

sign a conditional probability p1ð3;4;6Þ ¼ ð1� pÞr2ð1� qÞ=ðr2½ð1� qÞ þ pq� þ r1pqÞ to

8 Note that the demand for liquidity of informed agents is xI ¼ 0 in states 2 and 5 and xI ¼ c1 in states 3

and 6.
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receiving the highest second period consumption and p2ð3;4;6Þ ¼ p½qþ r2ð1� qÞ�=
ðr2½ð1� qÞ þ pq� þ r1pqÞ to receiving the lowest second period one.

CT1 ¼ t2c1; which implies state h ¼ 5:

Given the above information partitions, we will characterize the optimal with-

drawal decision of uninformed agents for each state of nature.

(i) States 1 and 2: It is optimal for the uninformed agent not to withdraw in states
1 and 2 if the following condition holds:

c�1 þ 1
 �1�c

1� c
6 p1ð1;2Þ

ct1�2h þ 1
 �1�c

1� c
þ p2ð1;2Þ

ct1�2h
Rl

Rh
þ 1

� �1�c

1� c
: ð15Þ

The left side of Eq. (15) is the utility that the uninformed depositor obtains by

withdrawing in states 1 and 2 and the right side is the expected utility of not with-

drawing in those states.

(ii) States 3, 4 and 6: It is optimal for the uninformed agent to withdraw in states

3, 4 and 6 if the following condition holds:

c�1 þ 1
 �1�c

1� c
P r1 p1ð3;4;6Þ

ct1�2h þ 1
 �1�c

1� c

264 þ p2ð3;4;6Þ

ct1�2h
Rl

Rh
þ 1

� �1�c

1� c

375
þ r2 p1ð3;4;6Þ

ct2�2h þ 1
 �1�c

1� c

264 þ p2ð3;4;6Þ

ct2�2h
Rl

Rh
þ 1

� �1�c

1� c

375: ð16Þ

Similarly, the left side of Eq. (16) is the utility that an uninformed depositor obtains

by withdrawing in states 3, 4 and 6 and the right side is the expected utility of not

withdrawing in those states.

(iii) State 5: It is optimal not to withdraw in state 5 if the following condition

holds:

c�1 þ 1
 �1�c

1� c
6

ct2�2h þ 1
 �1�c

1� c
: ð17Þ

Finally, the left side of Eq. (17) is the utility that an uninformed depositor obtains by

withdrawing and the right side is the utility of not withdrawing in state 5.

Conditions for both information-induced and pure panic runs are given by the

following theorem.

Theorem 3. Assuming the condition given by Eq. (2) and that Eqs. (15)–(17) are sat-
isfied, then there exists in the model an equilibrium with bank runs.

Theorem 3 implies bank runs occur as a unique equilibrium in states 3, 4 and 6. In

states 3 and 6 there exist information-induced runs as there is a negative information

shock received by the informed individuals which induces the uninformed to with-
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draw as well. However in state 4 there is a pure panic run as there is no adverse in-

formation held by any agent in this state. In this case the uninformed have mistak-

enly withdrawn their funds from the bank.

As mentioned in the introduction, whenever there are runs, self-serving bank

managers will suspend convertibility. It is assumed that the suspension level will
be the highest proportion of type 1 depositors. The bank distributes the type 1 con-

tract until a fraction equal to the highest proportion of type 1 consumers (t2) has
withdrawn, after that, the bank will only give out all the available second period con-

sumption. Clearly, there is a gain in states where there is no information held by any

agent (state 4) and a loss when (i) there is bad information (states 3 and 6) and (ii)

some type 1 depositors (who face liquidity needs) are prevented from withdrawing in

this rationing rule, as it is assumed that agents arrive randomly at the bank and are

then treated on a first come first served basis. Let ~bb 9 be the random proportion of
agents of each type that are being rationed by the bank, that is, receive no payment

at date 1. The 1� b remaining agents are those that are able to receive the promised

payment c�1 at date 1. This means that total consumption at date 1 should be equal to

the suspension level, that is ð1� ~bbÞgCT1CT1 ¼ t2c�1 or equivalently, ~bb ¼ ðgCT1CT1 � t2c�1Þ=gCT1CT1
if there are runs and otherwise ~bb ¼ 0.

However, this suspension measure is only effective when the bank is solvent. This

assumption is based on Park (1991). 10 This implies that the bank is liquidated in the

bad states, in the case in which the liquidation value of the long term technology is
higher than the low return (Rl < L < Rh). In these states all agents claim the type 1

contract but only a fraction fmax of them will be able to receive first period consump-

tion. This means that in these states the first period resource constraint would be-

come

fmaxc�1 ¼ L ð18Þ

where the long term technology has been totally liquidated in period one, that is,

K ¼ 1.
In the second case, in which the liquidation value at date 1 is lower than the low

return (L < Rl) suspension would be effective, even in the bad states. The ex ante ex-

pected utility with suspension of convertibility is derived in Appendix B.1.

For the parameter values considered in Table 2, in case (a), the demand deposit

contract would be: c�1 ¼ 0:243, ct1�2h ¼ 1:235, ct1�2l ¼ 0:160, ct2�2h ¼ 0:782 and ct2�2l ¼
0:102. The expected utility with suspension (Uruns), when liquidation takes place in

the bad states, is �0.151.

Similarly, in case (b), the demand deposit contract would be c�1 ¼ 0:638, ct1�2h ¼
1:288, ct1�2l ¼ 0:167, ct2�2h ¼ 0:909 and ct2�2l ¼ 0:118. The expected utility with suspension

(Uruns) is �0.088.

9 Equivalently, we could have considered ~bb1,
~bbI,

~bbU random proportions of agents of each type.

However, this would have added an additional complication into the analysis, without changing the

essence of the result.
10 This paper shows that suspension of convertibility was a means to prove the bank�s solvency.

Historically, suspension was only for a brief period and insolvent banks were liquidated.
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4.2. The demand deposit contract without runs

It is now considered a contract which makes sure bank runs will not occur, as a

result of the negative information shock. This contract solves the same problem as

the one in the previous subsection with one exception: There are two additional in-
centive constraints that have to be added. These constraints describe when it is ratio-

nal for an informed agent to truthfully reveal his type:

U c1ð Þ6 r1U ct12l
 �

þ r2U ct22l
 �

; ð19aÞ

U c1ð Þ6 r1U ct12h
 �

þ r2U ct22h
 �

: ð19bÞ

However, if the contract satisfies Eq. (19a) it will also satisfy Eq. (19b) (and Eq.

(11)). The optimal contract in this case is obtained by maximizing the ex ante ex-

pected utility given by Eq. (9) subject to constraints (10) and (19a). The effect of

imposing this last constraint is to penalize first period consumption up to the point
the withdrawal incentive of individuals who do not need to consume early is elimi-

nated.

The solution to this problem is defined by the following theorem:

Theorem 4. The solution c�1, c
t1�
2h , c

t2�
2h to the demand deposit contract is characterized by

the following conditions:

ct1�2h ¼
1� t1

L
c�1

� �
Rh

1� t1
; ct1�2l ¼ ct1�2h

Rl

Rh

; ct2�2h ¼
1� t2

L
c�1

� �
Rh

1� t2
; ct2�2l ¼ ct2�2h

Rl

Rh

ð20Þ
and c�1 is the solution to the following non-linear equation:

ðc1 þ 1Þ1�c � r1
1� t1

L
c1

� �
Rl

1� t1
þ 1

264
375

1�c

þ r2
1� t2

L
c1

� �
Rl

1� t2
þ 1

264
375

1�c8><>:
9>=>; ¼ 0:

ð21Þ

For the parameter values considered in Table 2, in case (a), the demand deposit

contract would yield: c�1 ¼ 0:202, ct1�2h ¼ 1:557, ct1�2l ¼ 0:202, ct2�2h ¼ 1:535 and

ct2�2l ¼ 0:200. The expected utility achieved (Uno�runs) is �0.125. Similarly, in case (b),

the demand deposit contract would be: c�1 ¼ 0:304, ct1�2h ¼ 2:261, ct1�2l ¼ 0:294,
ct2�2h ¼ 3:178 and ct2�2l ¼ 0:413. The expected utility achieved (Uno�runs) is �0.096.

5. Welfare comparisons: Numerical examples

The previous sections have characterized the level of risk sharing that is achieved

when (i) the optimal contract can be conditioned on the random return and the liquid-

ity shock (second best allocation) and (ii) the bank is restricted to use a demand de-
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posit contract, as observed in practice. It is first considered a contract which allows for

the possibility of runs, and secondly, the contract is designed so that runs do not occur.

The aim of this section is to compare, using numerical examples, the above men-

tioned risk sharing contracts. In these examples, the allocations are determined as

described in the previous sections.
Let �tt ¼ 0:52, r1 ¼ 0:90, r2 ¼ 0:10, a ¼ 0:40 and q ¼ 0:99. As it can be observed, it

has been assumed that the lowest proportion of type-1 agents (t1) is realized with a

high probability (r1 ¼ 0:90). The motivation for this assumption is to create confu-

sion between a large withdrawal queue size at the bank, due to a high liquidity shock

(t2 realized), or a negative information shock. Also, in all the numerical examples

Theorem 3 is satisfied, that is, bank runs occur as a unique equilibrium. 11

Given these parameters, Figs. 1–4 display the difference between (i) the expected

utility achieved with a demand deposit contract that allows for runs and the expected
utility of the second best allocation and (ii) the expected utility with a demand de-

posit contract that avoids runs and the expected utility of the second best outcome,

both as a function of the relative risk aversion coefficient (c). The figures differ in the

probability of the low return occurring (p) and in the liquidation value of the long

term technology (L).
Figs. 1 and 2 illustrate the case in which the liquidation value of the long term

technology is assumed to be below the bad return (Rl) and the probability of this

low return occurring is 0.20 and 0.40 respectively. A common feature to these two
figures is that a contract that prevents runs attains greater risk sharing than one that

allows for runs, also the former contract approaches the second best outcome. Given

that the long term technology is liquidated only at a loss, this increases significantly

the welfare costs of bank runs and therefore it is always better to prevent runs, al-

though this implies penalizing first period consumption up to the point the with-

drawal incentives of individuals who do not need to consume early is eliminated.

Figs. 3 and 4 illustrate the case in which the liquidation value of the long term

technology is assumed to be between the low and the high return and the probability
of the low return occurring is 0.20 and 0.40 respectively. The results differ from the

previous cases, as now the superiority between the two contracts will depend on the

probability of the low return. In the case of Fig. 3 (p ¼ 0:20), contracts that allow for

runs achieve greater risk sharing that contracts that prevent runs. As in Alonso

(1996) this is because in order to change the deposit contract so that investors have

an incentive not to run, the depositors� payoffs have to be altered in all states of na-

ture, hence, a significant loss is incurred with high probability and the gain is only

realized with low probability. This loss is greater in this case than the one incurred
by liquidation. However, in the case of Fig. 4 (p ¼ 0:40), contracts that allow for

runs would be preferred only for very high levels of risk aversion. The reason is that

now, the loss of preventing bank runs by altering the deposit payoffs in all states of

11 It should be mentioned that we have focused on one possible equilibrium in order to explore the

welfare properties of the demand deposit contract in this framework. However, there may exist other

equilibria in the model.
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nature is incurred with lower probability and is less than the one incurred by liqui-

dation. 12

Fig. 5 summarizes these results (for the more interesting case in which the liqui-

dation value is between the low and high return). It gives the critical probability

(p�) below which contracts that allow for runs would be welfare superior, as a func-

tion of the relative risk aversion coefficient and assuming different values in the dis-

Fig. 2. Expected utility with runs minus second best and expected utility with no runs minus second best

as a function of c, and assuming the probability of the low return is p ¼ 0:40 and case (a).

Fig. 1. Expected utility with runs minus second best and expected utility with no runs minus second best

as a function of c, and assuming the probability of the low return is p ¼ 0:20 and case (a).

12 As mentioned in the introduction this issue is also analyzed in a recent paper by Alonso (1996). In her

case she finds that contracts with runs are beneficial if the probability of a bad signal reaching a subset of

depositors is sufficiently low.
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persion and average return of the underlying technology. It is observed that this crit-

ical p� is always decreasing in the average return and increasing in the dispersion of

the random asset, measured by the variance of the asset�s return and is also increas-

ing in the level of risk aversion. The effect of risk aversion seems more important the

higher is the dispersion in the long term return and the lower its average return.

These results imply that the region below which it becomes optimal to allow runs in-

creases as risk aversion or the dispersion of the long return increase or if the average

return decreases. It could also be shown that the critical probability is increasing in
the liquidation value of the long term asset.

Finally, it should be mentioned that these results hold in the case in which indi-

viduals have CRRA > 1. The extension of the above results to a more general utility

Fig. 3. Expected utility with runs minus second best and expected utility with no runs minus second best

as a function of c, and assuming the probability of the low return is p ¼ 0:20 and case (b).

Fig. 4. Expected utility with runs minus second best and expected utility with no runs minus second best

as a function of c, and assuming the probability of the low return is p ¼ 0:40 and case (b).
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function would be a task for future research. However, it should be added that the
specific form of the utility function (the fact that individuals have corner preferences)

is not essential for the above conclusions, that is, the above results would remain

valid if a more general preference structure was considered (where individuals derive

utility for consumption in both periods of their lives).

6. Concluding remarks

This paper combines features of Diamond and Dybvig (1983) and Chari and Ja-

gannathan (1988) models to explore in depth the optimality of a demand deposit

contract. We consider a framework in which bank assets are risky, there is aggregate

uncertainty about the demand for liquidity in the population and some individuals

receive a signal about bank asset quality. Others must then try to infer from observed

withdrawals whether an unfavorable signal was received by this group or whether

liquidity needs happen to be high. In this environment information-induced and pure

panic runs will occur. In the model there are two types of social costs associated with
bank runs: One is the cost of liquidating the long term investment and the other is

the fact runs occur in some states although no one has adverse information.

In this context, the incentive-efficient allocation is identified with an optimal

mechanism design problem in which the optimal allocation can be made contingent

on the return on the risky asset (eRR) and the liquidity shock (~tt) but not on depositors�

Fig. 5. Critical probability below which contracts that allow for runs are welfare superior, as a function of

the relative risk aversion coefficient, and assuming different values in the dispersion and average return.
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types. If the bank could implement this allocation, there would be no bank runs. This

benchmark case is then compared with the risk sharing that is achieved in practice

through a typical demand deposit contract. It is assumed that banks are fully ratio-

nal, that is, they are aware depositors might receive interim information and they can

foresee the consequences of different contract structures. In particular, two different
contracts are considered: One contract allows for the possibility of runs while the

other one is designed so that bank runs are always prevented.

In order to analyze the welfare properties of the two contracts, some numerical

examples have been provided. The liquidation value of the long term asset and the

probability of the low outcome are crucial in order to determine the superiority be-

tween the two contracts. Two different cases are therefore considered: In the first case

the liquidation value of the long term asset is assumed to be lower than the low re-

turn. In this case a contract that prevents runs is always welfare superior and
achieves the second best outcome. The reason is that a low liquidation value signif-

icantly increases the welfare costs of bank runs and as a result it is better to prevent

runs although this implies penalizing first period consumption up to the point the

withdrawal incentives of depositors who do not need to consume early is eliminated.

In the second case the liquidation value is assumed to be between the low and high

return. The superiority between the two contracts depends on the probability of the

low return. It is shown that if this probability is below a critical value (p�), contracts
that allow for runs attain greater risk sharing than contracts that prevent runs. As in
Alonso (1996), the reason is that in order to change the deposit contract so that in-

vestors have an incentive not to run, the depositors� payoffs have to be altered in all

states of nature, hence, a significant loss is incurred with high probability, and the

gain is only realized with low probability. This loss is now higher than the welfare

costs associated with bank runs. This critical probability depends on the exogenous

parameters of the model: It is increasing in the level of risk aversion, in the liquida-

tion value and in the dispersion of the long term asset. On the contrary, it is decreas-

ing in its average return.
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Appendix A. Ex ante optimal risk sharing problem

8eRR and ~tt the following problem is solved:

max
c1;c2;K

tU c1ð Þf þ ð1� tÞU c2ð Þg ðA:1Þ
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s.t.

tc1 6KL;

ð1� tÞc2 6 ð1� KÞR;

c1 6 c2:

ðA:2Þ

The first order conditions to this problem are the following ones:

oL
oc1

¼ ðc1 þ 1Þ�ct � t
L

k1 � k2 ¼ 0; ðA:3aÞ

oL
oc2

¼ ðc2 þ 1Þ�cð1� tÞ � ð1� tÞ
R

k1 þ k2 ¼ 0; ðA:3bÞ

oL
ok1

¼ 1� t
c1
L
� ð1� tÞ c2

R
¼ 0; ðA:3cÞ

oL
ok2

¼ c2 � c1 P 0: ðA:3dÞ

The incentive constraint is never binding (k2 ¼ 0).

From (A.3a) and (A.3b):

c�2 ¼
R
L

# $1=c

c�1


þ 1
�
� 1: ðA:4Þ

Substituting the value of c�2 in (A.3c):

c�1 ¼
1þ 1�t

R 1� R
L

# $1=c
" #

ð1� tÞ
L1=c

Rð1�cÞ=c þ t
L

: ðA:5Þ

Substituting the values of c�1 and c�2 in (A.3d) it can be shown that this case is satisfied

as long as eRR P L.
The incentive constraint is binding (k2 > 0).

From (A.3d):

c�1 ¼ c�2: ðA:6Þ

Substituting (A.6) in (A.3c):

c�1 ¼ c�2 ¼
RL

tRþ ð1� tÞL : ðA:7Þ

Similarly, it can be shown that this case is satisfied as long as eRR < L.
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The expected utility achieved would be:

(a) If L < Rl:

U � ¼ r1 ð1f � pÞ t1A t1;Rhð Þ½ þ 1ð � t1ÞBðt1;RhÞ� þ p t1A t1;Rlð Þ½
þ 1ð � t1ÞB t1;Rlð Þ�g þ r2 ð1f � pÞ t2A t2;Rhð Þ½ þ 1ð � t2ÞB t2;Rhð Þ�
þ p t2A t2;Rlð Þ½ þ ð1� t2ÞB t2;Rlð Þ�g ðA:8Þ

where

AðR; tÞ ¼

1þ ð1� tÞ
R

1� R
L

# $1=c
" #

ð1� tÞ
L1=c

Rð1�cÞ=c þ t
L

þ 1

8>>>><>>>>:

9>>>>=>>>>;

1�c

1� c
;

BðR; tÞ ¼

R
L

# $1=c
1þ ð1� tÞ

R
1� R

L

# $1=c
" #

ð1� tÞ
L1=c

Rð1�cÞ=c þ t
L

þ 1

8>>>><>>>>:

9>>>>=>>>>;

266664
377775

1�c

1� c
:

(b) If Rl < L < Rh:

U � ¼ p r1Cðt1;RlÞ½ þ r2Cðt2;RlÞ� þ r1ð1� pÞ t1Aðt1;RhÞ½ þ ð1� t1ÞBðt1;RhÞ�
þ r2ð1� pÞ t1Aðt2;RhÞ½ þ ð1� t2ÞBðt2;RhÞ� ðA:9Þ

where

Cðt;RÞ ¼

RL
tRþ ð1� tÞLþ 1

	 
1�c

1� c
:

Appendix B. The demand deposit contract with runs

The problem to be solved is

max
c1;c

t1
2h
;c
t1
2l
;c
t2
2h
;c
t2
2l

r1 t1U c1ð Þ
�

þ ð1� t1Þ ð1
�

� pÞU ct12h
 �

þ pU ct12l
 ���

þ r2 t2U c1ð Þ


þ ð1� t2Þ ð1
�

� pÞU ct22h
 �

þ pU ct22l
 ����

ðB:1Þ
s.t.

t1
c1
L
þ ð1� t1Þ

ct12h
Rh

¼ 1; t1
c1
L
þ ð1� t1Þ

ct12l
Rl

¼ 1;

t2
c1
L
þ ð1� t2Þ

ct22h
Rh

¼ 1; t2
c1
L
þ ð1� t2Þ

ct22l
Rl

¼ 1; ðB:2Þ

U c1ð Þ6 r1 ð1
�

� pÞU ct12h
 �

þ pU ct12l
 ��

þ r2 ð1
�

� pÞU ct22h
 �

þ pU ct22l
 ��

: ðB:3Þ
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From the first and second budget constraints it is obtained that ct12l ¼ ct12hðRl=RhÞ.
Similarly, from the third and fourth one ct22l ¼ ct22hðRl=RhÞ. Substituting the values of

ct12l and ct22l in the above problem, it may be formulated again as follows:

max
c1;c

t1
2h
;c
t2
2h

r1 t1U c1ð Þ
#'

þ ð1� t1Þ ð1
	

� pÞU ct12h
 �

þ pU ct12h
Rl

Rh

# $
$
þ r2 t2U c1ð Þ

#
þ ð1� t2Þ ð1

	
� pÞU ct22h

 �
þ pU ct22h

Rl

Rh

# $
$(
ðB:4Þ

s.t.

t1
c1
L
þ ð1� t1Þ

ct12h
Rh

¼ 1; t2
c1
L
þ ð1� t2Þ

ct22h
Rh

¼ 1; ðB:5Þ

Uðc1Þ6 r1 ð1
	

� pÞU ct12h
 �

þ pU ct12h
Rl

Rh

# $

þ r2 ð1

	
� pÞU ct22h

 �
þ pU ct22h

Rl

Rh

# $

ðB:6Þ

The FOCS are the following ones:

oL
oc1

¼ ðc1 þ 1Þ�c�tt � t1
L

k1 �
t2
L

k2 � ðc1 þ 1Þ�ck3 ¼ 0; ðB:7aÞ

oL
oct12h

¼ r1 ð1
	

� pÞ ct12h


þ 1
��c þ p ct12h

Rl

Rh

#
þ 1

$�c

ð1½ � t1Þ þ k3�

� ð1� t1Þ
Rh

k1 ¼ 0; ðB:7bÞ

oL
oct22h

¼ r2 ð1
	

� pÞ ct22h


þ 1
��c þ p ct22h

Rl

Rh

#
þ 1

$�c

ð1½ � t2Þ þ k3�

� ð1� t2Þ
Rh

k2 ¼ 0; ðB:7cÞ

oL
ok1

¼ 1� t1
c1
L
� ð1� t1Þ

ct12h
R

¼ 0; ðB:7dÞ

oL
ok2

¼ 1� t2
c1
L
� ð1� t2Þ

ct22h
R

¼ 0; ðB:7eÞ

oL
ok3

¼ r1 ð1
"

� pÞ ðc
t1
2h þ 1Þ1�c

1� c
þ p

ðct12h Rl

Rh
þ 1Þ1�c

1� c

#

þ r2 ð1
"

� pÞ ðc
t2
2h þ 1Þ1�c

1� c
þ p

ðct22h Rl

Rh
þ 1Þ1�c

1� c

#
� ðc1 þ 1Þ1�c

1� c
P 0; ðB:7fÞ

and where �tt ¼ r1t1 þ r2t2.
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From (B.7d):

ct1�2h ¼
1� t1

L c
�
1

 �
Rh

1� t1
: ðB:8Þ

From (B.7e):

ct2�2h ¼
1� t2

L c
�
1

 �
Rh

1� t2
; ðB:9Þ

and the value of c�1 is obtained as a solution to one of the following non-linear

equations.
(i) The incentive constraint is never binding (k3 ¼ 0). In this case the non-linear

equation is obtained substituting the values of k1 from (B.7b) and k2 from (B.7c)

in (B.7a):

�ttðc1 þ 1Þ�c � Rh

t1
L
r1 ð1
(

� pÞ
1� t1

L c1
 �

Rh

1� t1

	
þ 1


�c

þ p
1� t1

L c1
 �

Rl

1� t1

	
þ 1


�c
)

� Rh

t2
L
r2 ð1
(

� pÞ
1� t2

L c1
 �

Rh

1� t2

	
þ 1


�c

þ p
1� t2

L c1
 �

Rl

1� t2

	
þ 1


�c
)

¼ 0:

ðB:10Þ

(ii) The incentive constraint is binding (k3 > 0). In this case, the non-linear equa-

tion to be solved would be (B.7f) and ct12h and ct22h as given in (B.8) and (B.9).

B.1. Suspension of convertibility

The ex ante expected utility when a suspension of convertibility policy is applied is

defined as follows. 13

If L < Rl:

Uruns ¼ E~RR;~tt;~aa

c�1 þ 1
 �1�c

1� c
~ttð1

(
� ~bbÞ þ 11�c

1� c
~tt ~bb

þ ð~xxI þ 1Þ1�c

1� c
ð1� ~ttÞ~aað1� ~bbÞ þ ð ec2c2 þ 1Þ1�c

1� c
ð1� ~ttÞ~aa~bb

þ ð~xxU þ 1Þ1�c

1� c
ð1� ~ttÞð1� ~aaÞð1� ~bbÞ

þ ð ec2c2 þ 1Þ1�c

1� c
ð1� ~ttÞð1� ~aaÞ~bb

)
: ðB:11Þ

13 ec2c2 indicates the dependence on the state of nature ð~hhÞ and on the amount of type 2 agents rationed in

the first period ð~bbÞ.
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If Rl < L < Rh:

(a) In states 1, 2, 4 and 5:

U1;2;4;5 ¼ E~RR;~tt;~aa

c�1 þ 1
 �1�c

1� c
~ttð1

(
� ~bbÞ þ 11�c

1� c
~tt ~bb

þ ðexIxI þ 1Þ1�c

1� c
ð1� ~ttÞ~aað1� ~bbÞ þ ð ec2c2 þ 1Þ1�c

1� c
ð1� ~ttÞ~aa~bb

þ ð~xxU þ 1Þ1�c

1� c
ð1� ~ttÞð1� ~aaÞð1� ~bbÞ

þ ð ec2c2 þ 1Þ1�c

1� c
ð1� ~ttÞð1� ~aaÞ~bb

)
ðB:12Þ

where ~bb ¼ gCT1CT1 � t2c�1=gCT1CT1 if gCT1CT1 > t2c1 and otherwise ~bb ¼ 0.

(b) In states 3 and 6:

U3;6 ¼
L
c�1

ðc�1 þ 1Þ1�c

1� c

(
þ 1

#
� L
c�1

$
11�c

1� c

)
pq: ðB:13Þ

So in this case the expected utility with suspension would be: Uruns ¼ U1;2;4;5 þ U3;6.

Appendix C. The demand deposit contract without runs

The problem to be solved is

max
c1;c

t1
2h
;c
t2
2h

r1 t1U c1ð Þ
#'

þ ð1� t1Þ ð1
	

� pÞU ct12h
 �

þ pU ct12h
Rl

Rh

# $
$
þ r2 t2U c1ð Þ

#
þ ð1� t2Þ ð1

	
� pÞU ct22h

 �
þ pU ct22h

Rl

Rh

# $
$(
ðC:1Þ

s.t.

t1
c1
L
þ ð1� t1Þ

ct12h
Rh

¼ 1; t2
c1
L
þ ð1� t2Þ

ct22h
Rh

¼ 1; ðC:2Þ

Uðc1Þ6 r1U ct12h
Rl

Rh

# $
þ r2U ct22h

Rl

Rh

# $
: ðC:3Þ

The FOCS are the following ones:

oL
oc1

¼ ðc1 þ 1Þ�c�tt � t1
L

k1 �
t2
L

k2 � ðc1 þ 1Þ�ck3 ¼ 0; ðC:4aÞ

oL
oct12h

¼ r1ð1� t1Þ ð1
	

� pÞðct12h þ 1Þ�c þ p ct12h
Rl

Rh

#
þ 1

$�c

� ð1� t1Þ

Rh

k1

þ r1 ct12h
Rl

Rh

#
þ 1

$�c

k3 ¼ 0; ðC:4bÞ
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oL
oct22h

¼ r2ð1� t2Þ ð1
	

� pÞ ct22h


þ 1
��c þ p ct22h

Rl

Rh

#
þ 1

$�c

� ð1� t2Þ

Rh

k2

þ r2 ct22h
Rl

Rh

#
þ 1

$�c

k3 ¼ 0; ðC:4cÞ

oL
ok1

¼ 1� t1
c1
L
� ð1� t1Þ

ct12h
Rh

¼ 0; ðC:4dÞ

oL
ok2

¼ 1� t2
c1
L
� ð1� t2Þ

ct22h
Rh

¼ 0; ðC:4eÞ

oL
ok3

¼ r1
ðct12h Rl

Rh
þ 1Þ1�c

1� c
þ r2

ðct22h Rl

Rh
þ 1Þ1�c

1� c
� ðc1 þ 1Þ1�c

1� c
P 0; ðC:4fÞ

and where �tt ¼ r1t1 þ r2t2.
From (C.4d):

ct1�2h ¼
ð1� t1

L c
�
1ÞRh

1� t1
: ðC:5Þ

From (C.4e):

ct2�2h ¼
ð1� t2

L c
�
1ÞRh

1� t2
ðC:6Þ

and the value of c�1 is obtained as a solution to the non-linear Eq.(C.4f) where ct12h and
ct22h are those given in (C.5) and (C.6).

Finally, the expected utility achieved is

Uno�runs ¼ r1 t1
c�1 þ 1
 �1�c

1� c
þ ð1� t1Þ ð1� pÞ

ct1�2h þ 1
 �1�c

1� c
þ p

ct1�2h
Rl

Rh
þ 1

� �1�c

1� c

264
375

8><>:
9>=>;

þ r2 t2
c�1 þ 1
 �1�c

1� c
þ ð1� t2Þ ð1� pÞ

ct2�2h þ 1
 �1�c

1� c
þ p

ct2�2h
Rl

Rh
þ 1

� �1�c

1� c

264
375

8><>:
9>=>;:

ðC:7Þ
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